MicroRNA deep sequencing in two adult stem cell populations identifies miR-501 as a novel regulator of myosin heavy chain during muscle regeneration
نویسندگان
چکیده
MicroRNAs (miRNAs) are important regulators of skeletal muscle regeneration, but the underlying mechanisms are still incompletely understood. Here, comparative miRNA sequencing analysis of myogenic progenitor cells (MPs) and non-myogenic fibroblast-adipocyte progenitors (FAPs) during cardiotoxin (CTX)-induced muscle injury uncovered miR-501 as a novel muscle-specific miRNA. miR-501 is an intronic miRNA and its expression levels in MPs correlated with its host gene, chloride channel, voltage-sensitive 5 (Clcn5). Pharmacological inhibition of miR-501 dramatically blunted the induction of embryonic myosin heavy chain (MYH3) and, to a lesser extent, adult myosin isoforms during muscle regeneration, and promoted small-diameter neofibers. An unbiased target identification approach in primary myoblasts validated gigaxonin as a target of miR-501 that mimicked the effect of miR-501 inhibition on MYH3 expression. In the mdx mouse model, which models a pathological disease state, not only was miR-501 induced in regenerating skeletal muscle, but also its serum levels were increased, which correlated with the disease state of the animals. Our results suggest that miR-501 plays a key role in adult muscle regeneration and might serve as a novel serum biomarker for the activation of adult muscle stem cells.
منابع مشابه
Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682.
MicroRNAs (miRNAs) regulate gene expression by repressing target genes at the posttranscriptional level. Since miRNAs have unique expression profiles in different tissues, they provide pivotal regulation of many biological processes. The present study defined miRNA expression during murine myogenic progenitor cell (MPC) proliferation and differentiation to identify miRNAs involved in muscle reg...
متن کاملMicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice.
MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Here, we investigated the function and molecular mechanisms of the miR-208 family of miRNAs in adult mouse heart physiology. We found that miR-208a, which is encoded within an intron of alpha-cardiac muscle myosin heavy chain gene (Myh6), was actually a member of a miRNA fa...
متن کاملThyroid hormone regulates muscle fiber type conversion via miR-133a1
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1)...
متن کاملMicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells.
BACKGROUND MicroRNAs (miRNAs) regulate various biological processes through inhibiting the translation of RNA transcripts. Although miRNA-1 (miR-1) and miRNA-133 (miR-133) are abundantly expressed in the adult heart and involved in cardiac hypertrophy, the roles of these miRNAs in spontaneous myocardial differentiation are unknown. METHODS AND RESULTS The levels of miR-1 and miR-133 in mouse ...
متن کاملmicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice.
Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle-specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 143 شماره
صفحات -
تاریخ انتشار 2016